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Abstract 

The United States is currently experiencing increasing rates of sexually          
transmitted diseases (STDs). Rates of contraction are at record highs, while the            
budgets for prevention programs are being cut. By identifying which areas are at             
risk for increased infection rate, policy makers can target efforts towards           
prevention and treatment (specifically the introduction of new STD clinics) in           
areas that have the highest occurrence of STDs and lowest access to clinics. In              
this project, we develop a spatiotemporal machine learning model to predict the            
prevalence of chlamydia on a county-by-county level using data from the Center            
for Disease Control and census data. In addition, we use mixed integer linear             
programming to optimize the placement of new STD clinics at the county level.             
We analyze the locations of current STD clinics in Illinois and New Jersey to              
propose where STD treatment centers would optimally be placed in the future.  

 

1 Introduction 
In the United States, one in two sexually active people will contract a Sexually Transmitted               
Disease (STD) by age 25 [12]. In addition, while people between the ages of 15 to 24 make up the                    
majority of STD cases in the United States, only 12% of those individuals report being tested for                 
STDs in the last year [12]. According to the Center for Disease Control and Prevention (CDC),                
STD rates are at a record high for the fourth year in a row [2], making it clear that STDs are a                      
problem that is only increasing in urgency. A visualization of the rising STD rates can be seen in                  
Figures 1 and 2, which show the difference in cases of chlamydia per 100,000 people in 2005 and                  
2015, respectively. The number of red-shaded counties has increased, showing the greater            
prevalence of chlamydia over time.  



 

Figure 1: Cases of Chlamydia per 100,000 People in 2005 

 

 

Figure 2: Cases of Chlamydia per 100,000 People in 2015 

 

Unfortunately, there have been budget cuts in state and local STD prevention programs. In 2012,               
52% of programs saw budget cuts that reduced clinic hours, contact tracing, and screening for               
STDs [3]. Given these budget cuts, policy makers must carefully consider where they choose to               
target preventative measures in order to aid the populations that are in the greatest need and to                 
reduce the future prevalence of STDs.  

One way to decrease the prevalence of STDs is to increase the number of STD testing and                 
treatment centers around the United States. However, the number of STDs cases varies by              
geographic region, and the Department of Health has a limited budget to allot toward treatment               
centers. Considering these constraints, the placement of STDs treatment centers should be            
optimized for treatment needs, which requires a method to determine which areas experience the              
greatest occurrence of STDS and are therefore in the greatest need for STD clinics. In order to                 
enable health committees and policymakers to plan for new STD clinics, this problem requires              
predicting, based on data about the past occurrence of STDs, the future rates of STD incidence.                
This paper centers on developing a predictive model that accomplishes this and solving an              
optimization problem to optimize the placement of STD clinics.  



In this project, we focus on the occurence of one STD, Chlamydia trachomatis, within the United                
States. First, we present a predictive model that determines the number of cases of chlamydia per                
person at the county level, using STD, census, and county-to-county migration data. This             
spatiotemporal model uses data for five years and then predicts chlamydia prevalence for the sixth               
year. It can be used to pinpoint the areas with the highest chlamydia occurrence rates, suggesting                
where STD treatment centers may be most necessary in the future. Secondly, we examine the               
placement of new STD centers as an optimization problem, using data about the current locations               
of treatment centers in Illinois and New Jersey and the predictions made by the predictive model.                
With this data, we then use mixed integer linear programming to maximize the number of people                
who have access to treatment centers and to ensure that regions with high rates of chlamydia have                 
access to an STD treatment clinics. Together, the predictive model and optimization problem can              
be used to select the best locations for additional treatment and testing centers. We hope that this                 
predictive model of STD prevalence and optimization solution will provide policymakers and            
health committees with insight on how to ensure that STD treatment needs within the United               
States are adequately met. 

 
2 Related Work 
Other researchers have tackled the problem of modeling diseases and other medical conditions             
using machine learning, though it appears that no previous research group has created a predictive,               
spatio-temporal model of sexually transmitted disease for the United States. 

Petrova et. al (2016) used machine learning to model chlamydia over space and time in London                
[10]. The researchers had a similar goal to our goal for this project: to identify high risk areas in                   
order to inform prevention efforts by public health organizations. Their methodology was divided             
into three stages: visualization, exploratory data analysis, and space-time modeling. The           
researchers first created maps of the spread of chlamydia over time in order to visualize which                
boroughs of London had higher rates than others. The researchers used three different predictive              
modeling techniques: support vector regression, ETS, and Croston's method. They examined           
smaller temporal and spatial scales than we did in this project, and they did not use census or                  
demographic data.  

Maharana and Nsoesie (2018) examined how features of the built environment (such as parks,              
highways, and crosswalks) of cities are associated with the prevalence of obesity in those cities               
[7]. The team used a convolutional neural network and elastic net to extract data about the features                 
of the environment from satellite images. Although our project uses demographic features rather             
than features of the environment, this work is informative about how spatial information can be               
used to predict the prevalence of medical conditions.  

Although population surveys have traditionally been used for studies that examine public health             
statistics, Luo et. al (2015) demonstrated the feasibility of using just the sociodemographic data              
from censuses and community surveys to make inferences about regional public health outcomes             
[6]. Their team of researchers built a machine learning model for predicting the regional health               
outcomes of several non-communicable diseases across the United States, using sociodemographic           
characteristics from the American Community Survey. Their model was able to produce            
reasonable predictions that were highly correlated with the sociodemographic features. This work            
suggests that the census features could be used to predict STD prevalence.  
 
2.1 Improving Upon Past Work 

We aim to create a predictive model for STD rates within the United States, which no previous                 
works have attempted. Previous similar work has also used more fine-grain data, at borough and               
postcode level and sampled monthly and weekly. We do not have data on such a small spatial or                  
temporal scale available to us. Thus, we seek to create a model which still performs optimally                
using data which is only collected per year and at the county level. In addition, previous works                 



have focused on more complex models. We, instead, more simple models to see if a more                
interpretative model can still be effective for our goals. Our ultimate goal is to take results from                 
the predictive model to determine optimal treatment center locations in the United States that              
would improve access to treatment for affected individuals. No previous research has focused on              
optimization for this problem.  

 
3 Data 
Our predictive model of STD prevalence involves census data, data about the occurrence of STDs               
in the United States, and data about the county-to-county flow of migrants. In addition to STD rate                 
and migration data, the optimization problem requires data about the locations of clinics in Illinois               
and New Jersey.  

 
3.1 Predictive Model Datasets 

We use the American Community Survey (ACS) 1-Year Estimates, obtained form Social            
Explorer, as our source of census data on the county level [13]. Census variables included total                
population, population density, average household size, population counts for males and females,            
and population count breakdowns by age, marital status, poverty status, and income. The Social              
Explorer website offers ACS 1-Year Estimates beginning with the year 2006, therefore we             
selected this year as the beginning of our data set and used data until the year 2016, which is the                    
last available year for STD data from the CDC’s Sexually Transmitted Disease Surveillance Data              
[1]. The census data provided information on 782 counties in the United States, rather than for all                 
counties. The counties included in the ACS 1-Year Estimates are highlighted in red in Figure 3.  

 

 

Figure 3: Map of Counties Covered (in Red) by ACS 1-Year Estimates 

 

The CDC’s STD Surveillance Data provided the number of cases of chlamydia per county for               
each year from from 2000 to 2016 and for counties within all states of the United States. We                  
obtained data beginning in year 2006 and ending in 2016. The STD Surveillance Data covers all                
counties of the United States, but only data for 782 counties could be used, as the American                 
Community Survey Estimates were available only for a subset of all the counties. 

The SOI Tax Stats Migration Data from the IRS for the years 2006 to 2016 was used to obtain                   
counts of the inflow and outflow of individuals between counties [4].  

Finally, we used a list of counties and their neighbors from the National Bureau of Economic                



Research, which lists all counties of the United States and provides the names of the counties that                 
border a given county [8]. 

 
3.2.1 Preprocessing of Data for the Predictive Model 

The CDC’s STD Surveillance data is provided by county name, rather than FIPS code, therefore               
we preprocessed the data in order to associate each row of the STD data with a FIPS code [1].                   
Similarly, we had to convert the list of counties and their neighbors to FIPS codes, as they were                  
originally provided with full county names. Additionally, all features except cases per person were              
normalized. 

The target feature to predict was cases of chlamydia per person. The CDC provides only the raw                 
number of cases of chlamydia per county in each year. To calculate cases per person, the number                 
of cases per county per year was divided by the total population of the corresponding county for                 
the given year, taken from the census data. 

To capture temporal trends in the cases of chlamydia per person, our model considers the               
difference in the rates of cases per person for each year of training data. These engineered features                 
involved taking the difference between the cases per person per county for the last and first years                 
of training data, as well as between and , and , and , and       year1  year0  year2  year1  year3  year2   

and .year4 year3  

We aimed to capture the spatial trends in the number of cases per person by considering the flow                  
of people between counties, calculating infected inflow ​i, which is the number of infected people               
from neighboring counties moving to a particular destination county ​m​ in each year.  

For each year, we examined each destination county ​m​. For each of ​m​’s neighboring counties ​n                
(determined from the county adjacency data), we obtained the number of migrants moving from              
the neighbor ​n ​to the destination ​m in a given year, taken from the migration data. We then found                   
the infected inflow ​i� ​by summing, over all of ​m​’s neighbors, the product of the number of                 
migrants from ​n​ to ​m​ and the probability of being infected with chlamydia in county ​n​.  

      umMigrants robInfectedim =  ∑
 

nm

n m,n × p n  

The probability of being infected was the number of raw cases of chlamydia in county ​n for a                  
particular year, divided by the population of ​n​ in that year.  

     robInfected  p n =  totalP opn

rawCasesn  

Infected inflow was calculated for each county in each year.  
 
3.2 Optimization Problem Datasets 

Our optimization problem requires data on where STD treatment centers are currently located.             
This data is not available for the United States as a whole, therefore we selected two states, Illinois                  
and New Jersey, that we were able to find a list of clinics for. This data came from the Illinois                    
Department of Public Health [11] and the New Jersey Department of Health [9] and provided the                
name of the clinics, their street addresses, counties, zip codes, and phone numbers.  

 
3.2.1 Preprocessing Data for Optimization Problem 

The addresses of STD clinics in Illinois [11] and New Jersey [9] were preprocessed in QGIS to                 
geocode the addresses to latitudes and longitudes so that we could more precisely visualize current               
locations on a map of each state. In addition, we counted the number of current clinics per county.                  
For Illinois (which did not have census data available for all counties and therefore our predictive                
model could not make predictions for the state), we optimized on the summed the number of                



reported chlamydia cases for each county over the years 2012-2016. For New Jersey, we              
optimized on the summed number of cases per person (determined by the linear regression              
predictive model) for 2012-2016.  

We attempted to compute the per-person accessibility to clinics in New Jersey and Illinois.              
However, since there is not ACS 1-Year estimates available for every county in Illinois, we were                
unable to compute the per-person accessibility for Illinois’ infected population. However, we were             
able to determine per-person accessibility for New Jersey. In addition, we summed up the number               
of clinics in each county of the two states, finding that Illinois has 102 counties but only 59 STD                   
treatment centers (six of which are within Chicago alone), whereas New Jersey has at least one                
STD treatment center per county. 

 
4 Predictive Model 
The machine learning methods we used to develop the predictive models were linear regression,              
gradient boosting regression, and random forests to predict the number of cases per person.  

 
4.1 Time Independent Linear Regression 

The first model was a time independent model, which was trained on data from all years. This                 
model was for exploratory purposes to see how the model would work with only census and                
infected inflow features, ignoring temporal trends in the cases per person. This model had 43               
features, which were the census features plus infected inflow. A plot of predicted and actual cases                
per person can be seen in Figure 4.  

 

Figure 4: Predicted Cases Per Person vs. Actual Cases Per Person for a Linear Regression Time 
Independent Model 

 

The r² for the model was 0.364. This low r² was an indication that census features and spatial data                   
alone were not enough to predict the number of cases per person well. Our goal then became to                  
develop a time dependent model that would more accurately predict the number of cases per               
person.  

 
4.2 Time Dependent Models 
 



4.2.1 Approaches to Time Dependent Models  

After exploring the time independent model, we built several time dependent models, using linear              
regression, gradient boosting regression, and random forests, and attempted to account for the             
spatiotemporal trends in chlamydia rates. The gradient boosting regressor had 100 estimators, each             
with a maximum depth of 2. The random forest regressor had 100 estimators as well.  

The time dependent models were trained on data from five consecutive years, and the model then                
made a prediction about the number of cases per person for counties in the sixth year. For each                  
training year, the model took in 42 census features, infected inflow, and the number of cases per                 
person in each training year. It also included the five engineered features that tracked the               
difference in number of cases per person between years, resulting in 225 features.  

For each of the three machine learning methods we used, we developed six time dependent               
models. This was because our available data spanned from 2006 to 2016, and we split the data into                  
6 six-year windows so that the models could train on five years of data and predict for the sixth.                   
The year₀ values for the six training models ranged from 2006 to 2011, which meant the years we                  
predicted cases per person for ranged from 2011 to 2016.  

 
4.2.1 Time Dependent Models Results Before Feature Selection 

The models were evaluated using 5-fold cross-validation. The r² and MSE results of the time               
dependent models before feature selection can be seen in Table 1.  
 

Table 1: R Squared and MSE Values for the Predictive Model Before Feature Selection 
 
 

Year₀ 

Linear regression GBR Random forest 

r² MSE r² MSE r² MSE 

2006 0.707 -1.601e-06 0.907 -5.430e-07 0.905 -5.538e-07 

2007 0.863 -6.819e-07 0.935 -3.195e-07 0.931 -3.432e-07 

2008 0.792 -8.729e-07 0.905 -3.952e-07 0.905 -3.957e-07 

2009 0.755 -1.066e-06 0.874 -5.442e-07 0.888 -4.864e-07 

2010 0.746 -1.061e-06 0.894 -4.436e-07 0.893 -4.476e-07 

2011 0.482 -4.347e-06 0.642 -3.501e-06 0.685 -3.307e-06 

 
All three machine learning methods performed the best, in terms of r², on year₀ = 2007. They also 
all performed poorest, in terms of r², on year₀ = 2011. GBR and random forests performed much 
better overall, with r² values generally around 0.9, while linear regression performed with r² values 
around 0.7 to 0.8 (ignoring 2011, which had much worse performance across the different kinds of 
models). Figures 5, 6, and 7 display the actual and predicted cases per person for year₀ = 2007 
using linear regression, gradient boosting regression, and random forests. 
 



 

Figure 5: Predicted Cases Per Person vs. Actual Cases Per Person Using Linear Regression Time 
Dependent Model, year₀ = 2007 

 

 

Figure 6: Predicted Cases Per Person vs. Actual Cases Per Person using GBR Time Dependent 
Model, year₀ = 2007 

 



 

Figure 7: Predicted Cases Per Person vs. Actual Cases Per Person using Random Forest Time 
Dependent Model, year₀ = 2007 

 
The improvement of GBR and random forests over linear regression is especially clear for the 
worst-performing year across the models: year₀ = 2011. For year₀ = 2011, linear regression had 
an r² of 0.482, while GBR and random forests improved that r² by about 0.2. Figures 8 and 9 show 
the difference in performance between linear regression and GBR for year₀ = 2011. The GBR 
model clearly produces more linear results. 

  



 Figure 8: Predicted Cases Per Person vs. Actual Cases Per Person using Linear Regression Time 
Dependent Model, year₀ = 2011 

 

 

Figure 9: Predicted Cases Per Person vs. Actual Cases Per Person using GBR Time Dependent 
Model, year₀ = 2011 

 
There are a few outliers that bring down the overall performance of both linear regression and 
GBR for year₀ = 2011, resulting in a lower r² than other year₀ values. For 2011, the actual number 
of cases was much higher than the predicted number of cases. This suggests that the models may 
have limited utility in the real world if health policy makers were using them to predict the 
prevalence of STDs because they underpredict for certain outlier areas.  

 
4.2.2 Time Dependent Models Results After Feature Selection 

We used recursive feature elimination with 5-fold cross validation to determine the 20 most              
important features for each time dependent model. One example of feature importance from             
recursive feature elimination can be seen in Figure 10, for the linear regression model of year₀ =                 
2006, showing that it has the best performance with about the top 20 features.  

 



   

Figure 10: Recursive Feature Elimination for Linear Regression Model for year₀ = 2006 

 

The r² results of the time dependent models after feature selection for the top 20 features can be                  
seen in Table 2. 

 
Table 2: R Squared Values for Predictive Models after Feature Selection  

Year₀ Linear regression GBR Random forest 

2006 0.856 0.878 0.8823 

2007 0.913 0.929 0.925 

2008 0.889 0.899 0.887 

2009 0.724 0.753 0.748 

2010 0.917 0.924 0.921 

2011 0.547 0.139 0.437 

 

After selecting for the top 20 features, linear regression improved its performance for all year₀ 
values. The most significant improvement was for year₀ = 2010, where r² increased from 0.746 
before feature selection to 0.917 after feature selection.  

The GBR model generally decreased in performance with feature selection, especially for year₀ = 
2011, where r² decreased from 0.643 before feature selection to 0.139 after feature selection. 
Figure 11 shows GBR on year₀ = 2011 after feature selection, which can be contrasted with its 
performance before feature selection in Figure 9. It may be possible that with more careful feature 
selection (rather than just the top 20 features), GBR may be able to maintain or improve its 



performance once feature selection is added.  

   

Figure 11: Predicted Cases Per Person vs. Actual Cases Per Person using GBR Time Dependent 
Model, year₀ = 2011, after Feature Selection 

 

The performance of the random forest was also slightly worse after feature selection. The random 
forest for year₀ = 2011 was not as negatively impacted as it was for GBR. With a random forest, r² 
performance went from 0.685 to 0.437 for 2011, which is a large decrease but not as extreme as 
the decrease that GBR experienced. 

 Interestingly, in contrast to the effects of feature selection on GBR and the random forest, feature 
selection helped linear regression for year₀ = 2011, bringing r² up from 0.482 to 0.547.  

The top features varied for each kind of machine learning technique, but they were typically fairly 
consistent across the year₀ values for a particular machine learning technique. The six most 
important features for each time dependent model can be seen in Table 3. This table provides only 
a brief overview of the trends on the most important features for each kind of model, since many 
of the most important features for a particular model in a certain year tended to be the same 
feature, just at different training years. 

 
Table 3: 6 Most Important Features for Time Dependent Models 

Year₀ Linear regression GBR Random forest 

2006 pop_density_t2, pop_density_t0, 
pop_density_t3, pop_density_t1, 
male_t0, cases_per_person_t4 

cases_per_person_t4, 
cases_per_person_t3, 
cases_per_person_t1, 
cases_per_person_t0, 
cases_per_person_t2, 
diff_cases_t2_t3 

cases_per_person_t4, 
cases_per_person_t3, 
cases_per_person_t2, 
cases_per_person_t1, 
cases_per_person_t0, 
diff_cases_t3_t4 

2007 pop_density_t1, pop_density_t2, cases_per_person_t4, cases_per_person_t4, 



pop_density_t0, 
cases_per_person_t4, 
cases_per_person_t0, 
cases_per_person_t3 

cases_per_person_t3, 
cases_per_person_t1, 
cases_per_person_t0, 
cases_per_person_t2, 
household_income_ 
over_200_t2 

cases_per_person_t2, 
cases_per_person_t3, 
cases_per_person_t1, 
cases_per_person_t0, 
diff_cases_t3_t4 

2008 pop_density_t1, pop_density_t0, 
cases_per_person_t4, female_t1, 
male_t3, female_t3 

cases_per_person_t4, 
cases_per_person_t1, 
cases_per_person_t1, 
cases_per_person_t3, 
cases_per_person_t0, 
infected_inflow_t3  

cases_per_person_t4, 
cases_per_person_t2, 
cases_per_person_t3, 
cases_per_person_t1, 
cases_per_person_t0, 
infected_inflow_t3 

2009 cases_per_person_t4, 
cases_per_person_t3, 
age_55_to_64_t1, female_t0, 
cases_per_person_t2, male_t3 

cases_per_person_t3, 
cases_per_person_t4, 
cases_per_person_t2, 
cases_per_person_t1, 
cases_per_person_t0, 
avg_household_size_t2 

cases_per_person_t3, 
cases_per_person_t4, 
cases_per_person_t2, 
cases_per_person_t1, 
cases_per_person_t0, 
diff_cases_t0_t1 

2010 cases_per_person_t4, 
cases_per_person_t3, male_t0, 
diff_cases_t2_t3, 
diff_cases_t0_t4, 
cases_per_person_t0 

cases_per_person_t4, 
cases_per_person_t3, 
cases_per_person_t1, 
cases_per_person_t2, 
diff_cases_t3_t4, 
cases_per_person_t0  

cases_per_person_t4, 
cases_per_person_t3, 
cases_per_person_t2, 
cases_per_person_t2, 
cases_per_person_t0, 
diff_cases_t2_t3 

2011 age_25_to_34_t1, male_t2, 
female_t0, age_under5_t0, 
age_25_to_34_t0, 
age_under5_t1 

cases_per_person_t3, 
household_income_15
0_to_200_t1, 
cases_per_person_t4, 
cases_per-person_t1, 
cases_per_person_t0, 
cases_per_person_t2 

cases_per_person_t3, 
cases_per_person_t4, 
household_income_1
50_to_200, 
cases_per_person_t1, 
cases_per_peron_t0, 
cases_per_person_t2 

 

Overall, in linear regression, the top 20 features usually included population density, cases per 
person at all of the training years, and male and female populations at most training years. The 
most important features for GBR were cases per person at all years, the difference in cases per 
person between years, average household size, infected inflow, and various income variables 
(including $75,000-$100,000, $100,000-$125,000, and 200,000+). Random forests had a similar 
set of important features, but income features were not as high ranking in the top 20 features. 
Overall, the linear regression model did not use as many of the spatiotemporal features (like 
infected inflow and difference in cases) as GBR and random forests did.  

 
4.2.3 Time Dependent Models Discussion 

GBR and random forest clearly perform better than linear regression in predicting cases per              
person. In determining which model performs best, it is important to consider how interpretable              
the models are. In general, linear regression has the advantage of being easily interpretable.              
However, given its suboptimal performance in comparison to the other methods, GBR or random              
forests may be a better option than linear regression for this problem.  



Despite being less interpretable than linear regression, GBR still is fairly interpretable, especially             
because the weaker learners built in a gradient boosting regressor are very simple. The gradient               
boosting regressors in this project were built up of 100 weak learners, each of which had a                 
maximum depth of 2. This low maximum depth makes the regressor still fairly interpretable              
overall. Given the strong performance and interpretability of GBR, we consider the GBR to be the                
strongest method for this problem.  
 
4.3 Improved Time Dependent Model, Using Training Sets of the Previous Year to 
Predict the Next Year 

To see if our linear regression model would improve and to eliminate bias with the training/test                
setup, we then trained a time dependent model on data for all counties in the previous year and                  
predicted for the next year. For example, to build a model for 2008, we trained the model on five                   
consecutive years of data, 2002 to 2006, plus the target value cases per person for the sixth year,                  
2007. The model then predicted predicted the cases per person for 2008 after receiving feature               
data about years 2003 to 2007. 

This approach was done in order to possibly improve the results of previous time dependent               
models. Since the previous training and test sets were being split between one year’s data, the                
previous models were training on a subset of the counties and did not have any information about                 
the counties in the test set that were being predicted. By training on a full set of data that included                    
feature and target values for all counties, we hoped that our results would improve since the model                 
would now have information on all of the counties it was trying to predict. 
 
4.3.1  Results with Improved Linear Regression Time Dependent Model 

We ran our linear regression with our modified training set and with feature selection. Each year                
only ran with the top 9 features because we saw an overall trend that nine features showed a                  
generally optimized result. The popular features were similar with the previous trials. Table 4              
compares the results of linear regression in previous time dependent model and in the improved               
time dependent model.  

 
Table 4: r² Comparisons For Different Training Sets for Linear Regression Model 

Year 
To 
Predict 

r² for Train/Test on 
Same Year  

r² for Train on Previous 
Year  

2007 0.913 0.863 

2008 0.889 0.904 

2009 0.724 0.869 

2010 0.917 0.896 

2011 0.547 0.600 

 

Compared to the training set which used the same year, the results for the training set with the                  
different year were more similar across years except for 2011. This was expected because since               
the training set is always using all of the counties, the result between the years should no longer                  
differ dramatically in the improved model. The training set using the same year differs more               
between each year’s results due to the fact that the model is using different counties for training                 



each time the model is trained (due to randomization of the training set) and therefore some county                 
subsets of data allow the model to perform better than other subsets of the counties data. The year                  
2011 does appear to be an outlier and does not perform as well as the other years. 

Overall, using a the training set with the previous year appears to be the more preferred method                 
since variation in performance from year to year is minimized. 
 
4.3.2  Results with Improved Gradient Boosted Regression Time Dependent Model 

We also ran our model with a gradient boosted regression since this model performed the best with                 
our previous training set type. This model also ran with the top nine features, and the features were                  
comparable to the previous trials with the different training sets.  

Overall, the GBR results with the training set for the previous year were similar to the linear                 
regression. Table 5 shows the results for the improved gradient boosting regression model. 

 
Table 5: r² Comparisons For Different Training Sets for GBR Model 

Year 
To 
Predict 

r² for Train/Test on 
Same Year  

r² for Train on Previous 
Year  

2007 0.929 0.891 

2008 0.899 0.844 

2009 0.753 0.853 

2010 0.924 0.889 

2011 0.139 0.586 

 
 

The results had less variance between the years (except for 2011) compared to using a training set                 
of a subset of the current year’s counties. This showed that using a training set consisting of the                  
previous year’s data is preferred for gradient boosted regression since it minimizes difference             
between the performance of the models for different years, while also performing quite well. 
 
4.3.2 Discussion of Improved Time Dependent Model for 2011 

The model for 2011 (shown in Figure 12) performed significantly worse than other years with r²                
values around 0.6 versus other years where the r² values were around 0.86. The cause for this is                  
unknown however the graph for 2011 shows outliers in the data where the predictions were               
inaccurate. There are two outliers which have large actual cases per person yet the model was                
predicting very low values. In addition, there are few points where the cases per person is low yet                  
the model predicted large values. These outliers thus appear to drastically lower the r², whereas               
other years do not have outliers that are so apparent. 



 

Figure 12: Improved Time Dependent Model for year₀ = 2011 
 
5 Optimization 
In addition to predicting STD rates for future years, we developed an optimization problem to               
determine the best counties to place STD treatment centers in order to maximize treatment to those                
who need it most. We formulated our problem using a Mixed Integer Linear Program that looked                
at current STD clinic locations (shown in Figure 13) in the specified state and the current, or                 
predicted, infected population per county. Our optimization was multi-objective and balanced both            
budget and infected population’s access to clinics. Due to the fact that the cost of building a clinic                  
varies state to state, we factored in flexibility and interpretability for policymakers into our              
problem by allowing a varying budget (in this case, budget being the number of clinics to be                 
built). 

 

 

Figure 13: Maps of current STD clinic locations in New Jersey and Illinois respectively. 

 
5.1 Mixed Integer Linear Program 
Our approach for New Jersey and Illinois differed based on available data. Due to the fact that                 
census data for Illinois did not cover all counties, we were unable to use predicted number of                 
infected from our linear regression model and had to use the raw, current rates from the CDC. In                  
addition, we were unable to get population counts per county and could not optimize per infected                
person. However, as census data covered all of New Jersey, we were able to both use both our                  
predicted numbers from the linear regression model and optimize per person access to clinics. 
  



We modeled our optimization off of Minimum Set Covering problem. Our decision variables, for 
each census tract ​i​, were: 
  

xb​i​ : the number of clinics built in location i 
xc​i ​ : the number of clinics covering location i 

  
Both ​xb​i​  ​and ​xc​i​ ​ must be positive integers for all census tracts ​i​. Our objective was to maximize 
the infected population’s access to clinics given a budget. 
  

Objective = total_infected_covered – ​ϵ​ × total_clinics_constructed  
With ​ϵ​ ​defined​ ​as 0.001, 
With​ total_infected_covered = sum​i ​ (xb​i ​ * num_infected​i​)​,  
And​ ​with ​total_clinics_constructed = sum​i​ (xb​i​ * num_infected​i​)​. 
 

That is, maximize total number of infected individuals covered and save on the number of clinics 
if both solutions cover the same number of people.  
 
We also included several constraints on our problem. Coverage per county had to be less than or                 
equal to the sum of the number of clinics in adjacent counties, plus the number of clinics in the                   
location itself. 

 ,cx i ≤ ∑
 

i
xai + xli  

Where​  ​xa​i ​= number of clinics in adjacent counties ​and 
Where​ xl​i ​= the current number of clinics in the location itself​. 

 
The maximum number of additional clinics built per location can be no more than two to ensure                 
that new clinics are not all directed at one specific area with a high prevalence of STDs: ​xb ​i  ​≤ ​ ​2 ​. 
 
The whole problem is then constrained by the budget, which is the number of new clinics to be                  
build, depending on the needs on policy makers.  
  
 B  ​≥​ ​total_clinics_constructed, 
 Where B = the number of new clinics to be built​. 
  
We programmed this formula using the Gurobi optimization solver. Since Illinois did not have an               
STD clinic in every county, at first, our problem only looked at coverage in a binary fashion (is a                   
county covered or not). However, with the addition of New Jersey, where each county already had                
an STD clinic, we expanded our definition of coverage to include by how many clinics the county                 
is being covered, that is the sum of how many clinics are in a particular county and in adjacent                   
counties.  
 
5.2 Results of Optimization 
Since we created our model to incorporate flexibility, we were able to produce graphs (see Figures                
14 and 15) and Tables 6 and 7 showcasing the infected population’s access to STD clinics                
dependent on varying budgets (number of added clinics). For both Illinois and New Jersey, we               
found there was not much improvement in the infected population’s access once 100 new clinics               
had been added. Illinois, however, had a much greater increase in accessibility between adding 0               
to 20 clinics. We attribute this to the fact that Illinois did not have STD clinics in every county,                   
whereas New Jersey already had at least one STD clinic in each county. 
 

 
 



 
Table 6 : Charts of New Jersey’s Infected Accessibility By Budget 

 
 
 

Table 7 : Illinois’ Total Infected Accessibility By Budget 

 
 
Without adding any STD clinics to the state, an estimated 140,682 predicted infected persons have               
access to clinics within New Jersey. By adding 20 clinics, 412,007 infected persons have access.               
With 50 clinics, 716,667 infected people have access, or, on average, each infected person has               
access to 1.31 clinics. In Illinois, without adding any clinics 1,027,948 infected persons have              
access. By adding 20 new clinics, 3,841,645 infected people have access, an over 273% increase               
(compared to New Jersey’s 192%). 
 
 
 
 
 
 



 
 
 

Figure 14: New Jersey Optimization Graph: Total Infected Accessibility 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15: New Jersey Optimization Graph: Per Person Accessibility 

 
 

 
 
 
 
 



 
Figure 16: Illinois Optimization Graph: Total Infected Accessibility 

 
With our optimization formula, policymakers can see in which counties to most effectively place              
new STD clinics. Our graph and table visualizations of number of infected access per budget also                
easily allow policymakers to understand the effectiveness of each additional clinic and how far              
their money may go. 
 
6 Conclusions and Possible Extensions  
 
6.1 Conclusions 

Our time dependent models using linear regression, gradient boosting, and random forests all             
improved on the exploratory time independent model. The gradient boosting regressor and random             
forest performed better than the linear regression time dependent model, while developing an             
improved time dependent model improved on our first version of the time dependent model.              
Ultimately, the gradient boosting regressor may be preferred because it both performs well across              
all values for year₀ and has a high interpretability.  

In the optimization problem, we found that, in both states, adding more than 100 clinics no longer                 
increases the number of people that have access to a clinic. We also found that the number of                  
people that gain access to a clinic with each additional clinic varies between states. This may be                 
due to the different baselines for the states, as New Jersey began with at least one clinic per                  
county, while some counties of Illinois did not already have a clinic.  
 
6.2 Limitations of the Predictive Model 

Our predictive model had a few key limitations, including limited data, features, and spatial and               
temporal resolutions. 
 
6.2.1 Limited Data 

There was only limited data available for some of the data sets used. The census data only had                  
information for 782 counties per year, when there are actually more than 3,100 counties in total.                
Our model may not account for the large number of counties that are missing information,               
especially for states in the Midwest that may be very sparsely covered by the American               
Community Survey 1-Year Estimates.  
 



6.2.2 Limited Features 

We were limited in which census features we could use in our model, due to the missing values for                   
many counties on features like school dropout rates, race, employment status, unemployment rate,             
and educational attainment. 
 
6.2.3 Limited Spatial and Temporal Resolutions 

Our model is limited in its utility/helpfulness for policy planners. The model predicts only one               
year into the future, whereas policy makers are more likely to make plans for construction and                
budgets many years in advance. It would also be more useful to policy makers to have finer                 
resolution predictions, at a level lower than the county level. More ideally, the model would be                
able to predict at closer to the census tract level because some states have very large counties, and                  
so having a county level prediction may not be as informative on where high STD rates occur. 

 
6.3 Limitations of the Optimization Problem 

Our formulation of the optimization problem had limitations in available data, as well as its utility                
and information gain for real world applications. 

 
6.3.1 Limited Data 

There is no single, unified dataset of the locations of STD clinics and treatment resources in the                 
United States. As a result, we were only able to pick two states (New Jersey and Illinois) and find                   
the locations of STD clinics from the state health departments. These lists of clinics from health                
departments may not be comprehensive of all STD clinics that are available in these areas, which                
could bring inaccuracy to the optimization problem. 

 
6.3.2 Limited Utility 

Our current definition of coverage is high level: a county is covered if there is a clinic in it or if an                      
adjacent neighbor has a clinic. The clinic placement recommendations are also very high level,              
since recommendations are given to place a clinic in a certain county, but it is not specified where                  
in the county. This limits the utility of the model for policy makers, as the model only provides a                   
very general idea of where a clinic should be placed.  

 
6.3.3 Limited Information Gain 

With our current implementation of the optimization problem, we are unable to gain information              
about the how an additional clinic in a particular county would decrease the number of cases of                 
chlamydia per person in that area, which would be helpful information for policy makers to have. 
 
6.4 Possible Extensions 
 
6.4.1 Include More Complete Data 
Some future directions for the model include using more expansive, complete census data that              
includes all counties of the United States. Right now, the model only considers 782 of more than                 
3,100 counties, which is very limited. Additionally, we would like to include some of the features                
that we weren’t able to use at this point due to missing data. This includes features like school                  
dropout rates, race, employment status, unemployment rate, and educational attainment. It would            
be beneficial to incorporate not only STD clinics into the optimization problem but also STD               
education programs to see which areas would be benefitted by additional STD education             
programs.  
 



6.4.2 Predict Further Into Future 
To make the model more helpful for policy planning, we want to improve the model to make                 
predictions for years father into the future, instead of just one year ahead. This would allow policy                 
makers to determine the placement of new clinics ideally five years into the future, providing time                
for planning and construction.  
 
6.4.3 Finer Resolution Predictions 
The optimization and predictions should be at a finer resolution in the future so that more specific                 
predictions for STD outbreaks can be made and more specific recommendations about where to              
put clinics can be provided. These next steps may require having STD data at finer resolution than                 
just at the county level, since county level data is all that is available at this time.  
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